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1. Phys.: Condens. Matter4(1992) 10503-10512. Printed in the UK 

COMMENT 

Comment on ‘A probabilistic mechanism hidden behind 
the universal power law for dielectric relaxation: 
general relaxation equation’ 

A Hunt 
Department of Earth Sciences, University of California. Riverside of California, 
Riverside. CA 92521, USA 

Received 23 December 1991 

Abstract. A recent article addresses the problem af’universal‘dielectric relaxation indipole 
glasses. The term ‘universal dielectric relaxation’. applied historically to conducting glasses 
as well. is used here for power-law behaviour of the conductivity above and helow the ‘loss 
peak in the imaginary part of the dielectric constant. But no general consensus exists that 
the conductivity may he represented universally in this form. No physical interpretation for 
the ‘lass peak‘ frequency is given; Dehye-like relaxation below this frequency arises from a 
coincidence in parameters. In the criticism of this article certain parallels with conducting 
glasses are noted, where corresponding physical conditions can he derived; the level of 
‘universality’ in the physical origins and experimental manifestations of dielectric relaxation 
processes remains uncertain, however. 

In a recent paper Weron (1991) discusses a model for ‘universal dielectric response’ 
which is a development of an original proposition by Jonscher (1977, 1980) which was 
published in nafure. In Weron’s article it is claimed that ‘universal dielectric response’ 
is the consequence of interaction effects and a ‘fundamental probabilistic relationship’, 
In fact, although it is certainly true that a cursory look at the dielectric response of 
strongly disordered solids suggests a high degree of universality, there is a wide variety 
of responses among various types of glasses owing to differing physical processes. Typical 
features of the dielectric response of glasses include: (i) DC conductivities which show 
exponential temperature dependences and vary strongly from system to system; (ii) 
weakly temperature-dependent AC conductivities, u(w);  (iii) slightly sublinear fre- 
quency dependence of the AC conductivity (whose exponent, s, tends to approach unity 
as the temperature is lowered to zero); (iv) a ‘plateau’ at frequencies near a phonon 
frequency, vPn = 1 O I z  Hz, in ~ ( w ) ;  (v) a broad, asymmetric loss peak in a ( o ) / w  = E ( W )  

at U,; (vi) the proportionality of U,, to w, (Barton 1966, Nakajima 1972, Namikawa 
1975, Long ef a[ 1988). Of these ‘universalities’, Weron addresses only one, namely the 
frequency dependence of the conductivity, and this, of course, in very general terms. 

Despite the fact thatJonscher’sargument, that a ‘wide spread’in individual transition 
rates could never lead to such universal behaviour, has been refuted (Hunt 1991a, b, 
c)-any exponential dependence of such transition rates, wS = vph exp E ,  on random 
variables 5 automatically yields (i), (ii), and (iii); (iii) implies (v); the percolation of 

og53-8984/92j5010503 + 10 $07.500 1992 IOP Publishing Ltd 10503 



10504 Comment 

pair processes at w, automatically generates (vi); while (iv) is the consequence of the 
‘universal’ prefactor, U -Jonscher’s type of approach is still advanced, but now with a 

?h 
far superior mathematical treatment. Nevertheless, the new methodology serves only 
to hide the weaknesses in the argument better. 

The most fundamental weakness is the desire to group all glasses together. Fun- 
damental differences are observed, however. Dipole glasses typically show a quadratic 
frequency dependence of u ( w )  in the limit of zero frequency (see, for example, Dixon 
ef al 1990), and, needless to say, no DC conductivity whatsoever. Ionic conducting 
glasses, on the other hand, generally yield subquadratic frequency dependences of ~ ( w )  
at low frequencies. This difference reflects a fundamental difference in the physics. The 
Fermi (electronic) glass also exhibits a subquadratic frequency dependence below the 
loss peak (Long et a1 1988). These frequency dependences represent a significant con- 
tinuing transfer of charge a t  rates slower than the inverse of the percolation frequency, 
in contrast to the situation in dipole glasses. The enhancement of relaxation times has 
different causes in these two systems because the Coulomb repulsion is very important 
in ionic conducting glasses, but may be largely ignored in the electronic glasses (except 
at very high frequencies, or very low temperatures). As a consequence, significantly 
different frequency scaling is observed in the two classes of systems; in the electronic 
glasses u(w)/u,,scaleswith ( w / w c  Tp)  (Summerfield 1985, Longetall988, Hunt 1991a, 
b) while in ionic conducting glasses (and dipole glasses) no power of Tis required (Dixon 
ef a1 1990). Moreover, the breakdown of scaling at high frequencies (Dixon ef al1990, 
Ngai 1991) is never mentioned, nor is any note made of possible competition between 
interaction effects and disorder. 

Specific weaknesses which I should like to point out are: (1) the theory involves an 
integral over an unknown distribution function, R(s) ,  with a lower limit wp (=wJ  which 
is introduced ad hoc, instead of being generated by the theory (see Hunt 1991a, h,  c); 
(2) a specific form for R(s) is chosen without motivation, and no discussion is included 
of how the results would be different if a different function were chosen; (3) a specific 
relationship is derived between the powersof the frequency (in ~ ” ( w ) )  below w, (m) and 
above w, (n  - l ) ,  i.e. m = (n  - l)/k, but k is simply introduced as an unknown constant 
in the arbitrary distribution function, R(s ) ,  with no attempt made to discuss its physical 
origin or exact value; (4) in order to generate m = 1 (a quadratic frequency dependence 
of U ( @ )  for w < w,) one requires that k = n - 1-an apparent coincidence, at least in 
the theory’s present state. 

In fact, despite the many criticisms of the application of Debye relaxation theory to 
disordered solids, a fundamental result of Debye theory is that the existence of a 
quadratic frequency dependence of u(w) at low frequencies clearly indicates that no 
relaxation processes with ‘t s w;l are relevant. This simple observation is considered 
nowhere by Weron. The reader issupposed, rather, to assume that aquadraticfrequency 
dependence arises when an undefined constant in a physically unmotivated specially 
chosen distribution function happens to be related to a power of the frequency-depen- 
dent conductivity, i.e. n - 1. In fact, n - 1 is known (Elliott 1988, Hunt 1992) to be 
proportional to Tin  ionic glasses, and to in the Fermi glass (in d dimensions). 
These proportionalities are clearly related to percolation theory, and appear here only 
as coincidences. 

Asafinalcomment,it isnotedthat nodiscussionofwhether u(w)obeysatruepower 
law, or is merely a good approximation to a power law, is included. This point is 
significant. Some theories predict a true power law (e.g. anomalous diffusion on fractal 
structures; see for example Stauffer 1985, Niklasson 1988), while approaches based 
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REPLY TO COMMENT 

Reply to the Comment by A Hunt 

Karina Weron 
Instirule of Physics, lkhnical University of Wroclaw 50-370. Wuctaw, Poland 

It is a pleasure to learn that my paper [l] has caused such a lively reaction, since 
it gives me an opportunity to better express my point of view. Unfortunately, most 
of Dr Hunt's statements are based on a misunderstanding. Since a large part of 
Hunt's comment is devoted to  7onscher's lype of approach' and is irrelevant to my 
own contribution in this field, I will concentrate in my reply on specific points raised 
by Hunt and leave a general discussion to Dr Hunt and Professor Jonscher. 

(i) 'The mosi fundamenfal weakness is the desire io group all glasses together: 
Orientational polarization is the classical type of polarization originally treated by 
Debye and refers to polar molecules which are freely floating in a dielectrically inert 
non-polar medium acting as a random noise source. Dipoles represent one extreme 
form of polarizable species; at the other extreme are hopping charge carriers. The 
concept of hopping movement has been very familiar for a long time in connection 
with ionic conduction, since ions move essentially only by hopping, whether by the 
interstitial or vacancy mechanism. This concept, extended to electronic charges, has 
found particular application in amorphous and disordered nonmetallic solids such 
as glasses and amorphous semiconductors. From two distinct classes of dielectric 
materials that have been identified [2-6], namely that of bound dipoles and that of 
potentially mobile charges, I considered only the bound dipole class. It was not 
my intention 'to group all glasses fogelher: Because in both these cases there are 
clearly seen differences in dielectric response [7], it is obvious that the description of 
dielectric relaxation has to be based not only on different physical processes but also 
on different probabilistic approaches. (A hopping charge carrier shows both dielectric 
characteristics in so far as it behaves like a jumping dipole in its reciprocating motions, 
and, simultaneously, conducting characteristics resulting from its extended hopping 
over many sites.) 

I was interested only in the bound dipole case for the following reasons. Over 
the last decade the physical basis for the dielectric respome behaviour in that class 
has been the subject of a great deal of interest [2-151. On the basis of experimental 
obselvations [16] it has been argued that from two types of function proposed to fit 
the experimental data, namely the strefched exponential response funcfion 

f ( t )  cx -(d/dt) {exP[-(w,t)l'-"} (1) 

and the power-lype response function 
for t l / w p  

for t >> l / w p  
f ( t )  a { ( w ~ t ) - "  

( w p t )  - -1  
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where 0 < n, m < 1, the second one fits the observed behaviour better. 
There are several known derivations of the stretched exponential relaxation 

function involving diverse concepts such as percolation, statistical distribution 
of relaxation times, hierarchical relaxation of constraints, multipolar interaction 
transitions, fractal time processes and dispersive transport of defects. Although these 
concepts are dissimilar, and despite differences in physical derails, all the proposed 
models derive experimental results for the short-time limit and agree in having as 
an input the behaviour in this range to the progressive involvement of a hierarchy 
of self-similar dynamic processes. The agreement between the models is no longer 
maintained for the long-time limit. 

The concept contained in the cluster model [4] represents a radical departure 
from the traditional picture of relaxation. In this model, from the consideration of 
the way in which the energy contained in fluctuations is distributed over a system of 
interacting clusters, an entirely new expression for the response function has been 
obtained. However, although the result is in agreement with the empirical function 
(2), this model does not convince one of its general applicability. 

(ii) In contrast to my article [l], all of Hunt’s papers referred to in his comment 
deal with hopping charge carriers in dielectric materials. The dielectric response 
associated with the presence in the material of this form of polarizable species 
was beyond the scope of [l]. Hence, I did not have to discuss the frequency- 
dependent conductivity U ( W )  which is preferable to the dielectric loss ~ “ ( w )  (or 
response function f(t)) when dealing with charge carrier systems. 

(iu) Specific weaknesses! The statements: (1)-(4) containing some reasonable 
questions about the function R(s) (which will be discussed below) prove, however, 
that Hunt did not read my article carefully enough! 

(1) The theory involves an integral with an upper limit upt (see [l], equation 
(30)), not with a lower limit wp. 

(2) The discussion of the specific form for R(s) was postponed in [l] to the 
second part of my work [15]. This is also addressed in more detail in point (iv) 
below. 

(3) The specific relation given by Hunt is wrong (see [l], equation (41)); m cannot 
be negative! 

(4) The constant k is a positive real number (see [l], equation (34)), so cannot 
be equal to n - 1, where 0 < n < 1. Hence, comparing with results obtained for 
hopping conductivity (as Hunt did on the basis of his incorrect conclusions from my 
article) is unfortunately meaningless as it is based on a misunderstanding. 

(iv) ‘The new methodology serves on& io hide the weaknesses in ihe argument better: 
Below, I will try to explain why the ‘new methodology’ did not serve to hide the 
weaknesses of Jonscher’s type of approach. In [l] 1 have presented a new probabilistic 
approach which can be helpful in searching for general principles governing relaxation 
in the bound dipole case. My aim was to establish a simple mechanism leading to the 
power law, as well as to the stretched exponential law, and also to provoke a discussion 
on the origins of the values of the power-law exponents, so that the information 
inherently available from response measurements may be correctly interpreted and 
understood. 

The simplest way to obtain a different result from the conventional Debye 
relaxation is to postulate a statistical distribution of relaxation times r. In physical 
literature it is natural to write [18] 
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q ( t )  = l m w ( r ) e x p  (-:) d r  (3) 

where w( 7 )  is a suitable weight distribution. 

conditional probability: 
From the probabilistic point of view, expression (3) can be rewritten in terms of 

q i ( t )  = PI(@; 2 1 )  = Pr(fI, 2 tIpi = b)dFg(b) (4) lm 
where 

Pr(€Ji 2 t 1 pi = b) = exp(-bt) (5) 

and Fg(b) is the " n o n  distribution function of relaxation rates p = l/r. The 
function q i ( t )  denotes the total probability that the ith dipole stays in its initial state 
up to the moment t. From (4) and (9, we get 

VAt) = . c ( F p ; t ) .  (6) 

pi(t) is simply the Laplace transform of the unknown distribution function Fp. and 
the above integral in (4) is the Stieltjes integral with respect to the distribution 
function. (For the terminology see [l], page 9155.) 

In a system consisting of a large number N of relaxing dipoles, the probability 
that the  system as a whole does not change its initial state up to the moment t has 
to be given by 

~ ( t )  = lim Pr a N  min ei 2 t 
N--m [ (16i6N ) ] (7) 

where aN > 0 is a suitable normalizing constant. So, for independent identically 
distributed non-negative random variables p, by the limit theorem [19], we obtain 
according to [ 11 

q ( t )  = N-W lim [ L C ( F @ ; ~ / ~ , ) ] ~  =e-*- O < a < l .  (8) 

It is not necessary to know the detailed nature of Fa to obtain the above limiting 
form. In fact, this k determined just by the behaviour of the tail of Fp( b) for large b, 
and so a good deal may be said about the asymptotic properties on the basis of rather 
limited knowledge of the properties of Fp. It can be shown [20] that the necessary 
and sufficient condition for the distribution function Fp(b) = l -Pr (P  > b) to belong 
to the domain of attraction of the Uvy-stable distribution (i.e. equation (8) holds) 
may be expressed by the following scaling law: 

Pr (p  > zb)  = z-* Pr(p > b) for b -t 03 and each z > 0. (9) 

In other words, the self-similarity in the relaxation rate taking a value greater than 
b and a value greater than zb is a necessaly and sufficient condition for p to 
have the limiting distribution. So, equation (8)  holds if and only if (9) holds. It 
has been suggested [5,12,17] that self-similarity (fractal behaviour) is a fundamental 
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feature of relaxation in real materials. This result, obtained here by means of pure 
probabilistic techniques, independently of the physical details, is in agreement with 
models [5,6,10,18] in identifying this region of fractal behaviour. 

From the probabilistic analysis, independently of a statistical distribution of 
relaxation rates, another important fact follows. In the commonly used expression (3) 
we find a hidden assumption-namely, each relaxing dipole after a long enough time 
(after removing the electric field) changes its initial position with probability 1: 

(10) 
1 for t = 0 
0 for t +  W. 

PI(@, 2 t 1 pi = 6) = exp(-bt) = 

Can such an assumption be accepted in the description of a relaxation process in real 
materials? 

Following the brief probabilistic analysis above, I tried to find in (11 a simple 
constraint which can change the rather suspect assumption (10). My propaition was 
based on a very simple idea: because of interactions, not every dipole subject to an 
external electric field has to  change its initial position (after removing the field) with 
probability 1, even after a very long time. The constraint was given by the random 
variable q. By assuming the dependence 

Pr(0, 2 t Ip, = 6,v i  = s) = exp[-bmin(t,s)] (11) 

we have for the ith dipole (6, s = constant) 

(12) 
exp( - 6 t )  
exp(-bs) = constant 

for t < s 
for 1 2 s Pr(0, 2 t I pi = b, q, = s) = 

i.e. the probability that the ith dipole does not change its initial position up to the 
moment t for t < s decreases exponentially with time, and for t 2 s has a constant 
value in the range [0,1] depending on the value s taken by a random variable q. 
Of course, this raises the question of what q really expresses, and what the limiting 
function R ( s )  is (see [l], equation (14)). 

The specific form of the function R(s) was chosen in [I] on the basis of analysis 
given in [17]. This form can also be deduced by means of the central result of classical 
extreme value theory [21], as will be shown below. 

If we take the point of view presented in cluster theory [4,7,17], then the random 
variable qi may express the maximal time for a structural reorganization in ( N  - 1) 
clusters surrounding the ith one (containing the ith dipole altered by an electric field, 
and its local environment): 

v i  = A; 1 max (q j )  
1<j<N. j # i  

where A N  is a suitable normalizing constant. The cluster model contains the concept 
of a constraint hierarchy, where ‘faster’ degrees of freedom successively constrain 
‘slower’ ones In a real system there may be a reverse constraint too, in which the 
state of ‘slower’ degrees of freedom determines the detailed dynamics of the ‘faster’ 
ones [18]. A hierarchical scheme is considered as the only reasonably natural way of 
generating a wide range of relaxation rates or relaxation times. So, the subsequent 
relaxation of the surrounding clusters drives the chosen one towards the ensemble 
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equilibrium on the time scale of the surroundings. Let us assume that the probability 
that the ith dipole does not change its initial position is not equal to 0 as 2 + 00, but 
is determined by the time s of the structural reorganization of the slowest cluster in 
the surroundingssee (12). Such an assumption, according to the scheme presented 
in my earlier paper 111, leads to the following equation: 

By the limit theorem [19,20] 

O < a < l  

and by the extreme value theory, cf 1211, chapter 1, 

e-l- + 
[ L ( F B ; ( ' / a N ) ) l N  N-m 

a ,w=N- I /P  

RN(~ I~N)NX-  R(1) = 1 - Q ( t )  (16) 

where Q ( t )  must have one of the three possible types of extreme value 
distribution. Since Q ( t )  is the limiting distribution of the maximal time for structural 
reorganization (13) its support has to be non-negative (i.e., the maximal time takes 
only values between 0 and +CO). So we have only one choice, namely the  so-called 
type I1 distribution. The supports of two other possible types always contain the 
negative semi-line (-m,O) and they are for this reason excluded. Hence 

for large 1 .  
1 R(1) = 1-exp -- [ l + k t a  

The constant k > 0 in (17) is a consequence of the normalization in the 
limiting procedure for distribution of maxima in sequences of independent identically 
distributed random variables. It determines how fast the structural reorganization of a 
cluster is spread out in a system ( k  -+ 0 denotes the case in which cluster componena 
are neglected). The above form of R(1) is determined only by the behaviour 
of the tail of Fq(s)  for large s. Hence, the necessary and sufficient condition 
for the distribution function Fq of independent identically distributed non-negative 
random variables to belong to the domain of attraction of the type I1 extremal value 
distribution (i.e., the random variables (13) converge to a limit random variable with 
the type 11 extremal value distribution) may be expressed (see [21], theorem 1.6.2) by 
the condition sup{s : F q ( s )  < 1) = +m and by the following scaling law: 

PI($ > z s )  = z-a Pr(?j > s) for s - 00 and each z > 0. (18) 

The scaling laws obtained, equations (9) and (IS), are in agreement with the 
identification of two different fractal regions given by the cluster model [4,7,17,22]. 
The self-similarity in two different regions was recognized as a fundamental feature 
of the regression of fluctuations leading to the power-law behaviour of the dielectric 
response. One form of self-similarity, equation (9), corresponds to the internal 
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dynamics of clusters, and the second form of self-similarity, equation (18), refers 
to the way in which the response of the macroscopic system is built up from cluster 
components. 

Hence, the proposed probabilistic mechanism can be considered as a 
representation of the entirely physical cluster model [4,7,17,22]. It shows explicitly, 
without any physical details, that the existence of two forms of self-similarity, one of 
which dominates the response at short times and the other at long times, leads to the 
power-law response. 

There are still many open questions for which the probabilistic analysis does not 
give answers. I do not propose that the approach presented is physically more correct; 
instead, I discuss the mathematical foundation and consequences of such an approach 
which may be better understood when there is a direct physical interpretation. 

I would like to conclude this reply with a quotation from E P Wigner [23]: ‘The 
first point is that mathematical concepts turn up in entirely unexpected connections. 
Moreover, they often permit an unexpectedly close and accurate description of 
the phenomena in these connections Secondly, just because of this circumstance, 
and because we do not understand the reasons of their usefulness, we cannot 
know whether a theory formulated in terms of mathematical concepts is uniquely 
appropriate.’ 

This research was supported in part by KBN Grant No 211539101. 
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